首页 » 投稿

一元二次方程教案设计(初中一元二次方程教学分析)

一元二次方程是初中数学的主要内容,在初中代数中占重要地位。学生以积极动手、动脑、动口为主线来完成。在教学中渗透类比化归等数学思想,让学生充分观察、体验,同时营造轻松愉快的学习氛围,以此激发学生的学习兴趣并渗透环保内容。以下是小编整理的关于一元二次方程教案,欢迎查阅!

一元二次方程教案1

教学目标

1、知识与能力目标: 要求学生会根据实际问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。

2、过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。

3.、情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识并与校园绿化相结合。

教学重点、难点

教学重点:通过实际问题模型建立一元二次方程的概念,认识一元二次方程一般形式.

2。难点:通过实际问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。

教学过程:

(一)创设情景,导入新课

问题一:学校有一块面积为900平方米的长方形绿地,并且长比宽多10米,则绿地的长和宽为多少?

分析:设长方形绿地的宽为x米,则列方程 ,

整理可得 。

问题二:有一块矩形绿化带,长100cm,宽50cm,在它的四角各栽种一个同样的正方形花坛,如果去掉四周矩形的底面积为3600cm2,那么四周花坛面积是多大的正方形?

分析:设长方形绿地的宽为x米,则列方程 ,

整理可得 。

问题三:要组织一次环保竞赛,参加的每两个班之间都要比赛一场。根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个班参赛?

【设计意图】因为数学来源于生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课,并激发学生环保意识。

一元二次方程教案2

启发探究,获取新知

上面的三个方程这两个方程是一元一次方程吗?它们与一元一次方程的区别在哪里?它们有什么共同特点呢?( 学生分组讨论,然后各组交流 )

共同特点:(1) (2) (3)

(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程。

因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0)。这种形式叫做一元二次方程的一般形式。

一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

【设计意图】通过上述情景分析,让学生小组合作,列出方程。在学生列出方程后,对所列方程进行整理,并引导学生分析所列方程的特征得出一元二次方程的概念。由于一元二次方程的概念是本节的重点,所以在形成概念的过程中主要引导学生积极主动进行自我尝试、自我分析、自我修正、自我反思,让学生真正理解一元二次方程概念的内涵:(1)是整式方程(2)只含有一个未知数(3)未知数的最高次数是2。

(三)例题解析,练习反馈

例题解析(投影展示)

例1:下列方程中哪些是一元二次方程?试说明理由。

例2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项

说明:一元二次方程的一般形式

≠0)具有两个特征:一是方程的右边为0;二是左边的二次项系数不能为0。

此外要使学生意识到:二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的。

例3:已知关于x的方程(k2-1)x2+(k+1)x-2=0

(1) 当k取何值时此方程为一元一次方程?

(2) 当k取何值时此方程为一元二次方程?并写出该一元二次方程的二次项系数,一次项系数,常数项。(同学先讨论,同桌交流再进行归纳)

【设计意图】通过例题,使学生巩固一元二次方程的概念,把握概念的实质。

练习反馈

1、课本第32页1、

2、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请尽可能多地写出满足条件的不同的一元二次方程?

【设计意图】开放题可以使学生开阔思维,进一步巩固概念。

(四)小结归纳,上升理性

引导学生从以下3个方面进行小结,(1)本节课我们学习了哪些知识?(2)学习过程中用了哪些数学方法?(3)确定一元二次方程的项及系数时要注意什么?

【设计意图】主要由学生进行总结和互相补充,以培养学生的归纳概括能力。

(五) 作业布置

1、教材P34 习题22.1

2、选用作业设计。

板书设计

 

版权声明:本文内容由互联网与用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至realees@163.com举报,一经查实,本站将立刻删除。温馨提示:本站部分文章具有时效性请勿盲目跟随,跟随风险将由个人承担。
0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
购物车
优惠劵
搜索